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• The proposed method estimates the homography and the angular velocity of the rotating point.
• All the measurements required in the estimation can be obtained in the image.
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a b s t r a c t

This paper presents a new method for estimation of the homography up to similarity from observing a
single point that is rotating at constant velocity around a single axis. The benefit of the proposed estima-
tion approach is that it does not require measurement of the points in the world frame. The homography
is estimated based on the known shape of the motion and in-image tracking of a single rotating point.
The proposed method is compared to the two known methods: the direct approach based on point cor-
respondences and a more recently proposed method based on conic properties. The main advantages of
the proposed method are that it also estimates the angular velocity and that it requires only a single cir-
cle. The estimation is made directly from the measurements in the image. Because of the advantages of
the proposed method over the other methods, the proposed method should be simple to implement for
calibration of visually guided robotic systems.

All the approaches were compared in the simulation environment in some non-ideal conditions and
in the presence of disturbances, and a real experiment was made on a mobile robot. The experimental
results confirm that the presented approach gives accurate results, even in some non-ideal conditions.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

Camera calibration is one of the fundamental tasks in com-
puter vision. Results of many computer vision algorithms depend
on good camera calibration, e.g. image rectification, 3D reconstruc-
tion, visual servoing, etc. The problem of camera calibration has
been addressed by many authors, and the topic is normally ad-
dressed in every computer vision book, e.g. [1]. The conventional
calibration approaches normally require a special preparation of
the working environment, usually by insertion of an object with
known dimensions into the environment, like a chessboard pat-
tern [2–4], a pattern of circular markers [5], or other conic patterns
[6–10], etc. Different calibration procedures use different camera
models that give different accuracies. Normally it suffices to use
only a basic pinhole cameramodel, but this model gives inaccurate
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results in presence of large lens distortions, so a more general
model must be considered [4,11]. The applicability of a particular
method depends on the environment in which the method is to be
used.

The conventional calibration techniques [2] are based on es-
timation of the camera model from a set of non-coplanar world
points and their images using the least squares or some other min-
imization algorithm, and decomposition of the estimated model
(normally in matrix form) into the camera intrinsic and extrin-
sic parameters. Zhang [3] proposed a similar approach that is also
based on decomposition, but from a set of homography matrices.
This work focuses on estimation of the homography, a transfor-
mation that relates two planes under perspective projection. In
computer vision, a homography is normally used to describe the
relation between two image planes, an image plane and a world
plane or two world planes. There exist well known algorithms for
extraction of the camera intrinsic and extrinsic parameters from
multiple homographies that all relate to the same image plane [3].
In this paper we investigate several homography estimation tech-
niques that can easily be deployed in visually guided robotic
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systems. The basic idea is to use robot motion in order to elimi-
nate the need for special preparation of the environment solely for
the purpose of camera calibration.

Recently, many approaches for camera calibration that are
based on studying the invariance of the conics under perspective
transformation have been proposed. Sugimoto [6] presented the
estimation from seven corresponding conics by solving an over
constrained algebraic set of equations. It has been shown that at
the minimum a pair of conic correspondences is needed for esti-
mation [7]. Many authors studied different configurations of con-
ics: coplanar circles [9,10], lines intersecting the circle centre [12],
concentric circles [13], etc.

Wong [14] studied self calibration from axial symmetric objects
(surfaces of revolution), objects that are frequently found in man-
made environments and have some special structure, but the exact
geometry is not known. In this paper we present a calibration
procedure for estimation of the homography up to similarity that
is based on circular motion of some world point around the single
axis. The method for camera calibration and 3D reconstruction
from rotation of an object about a single axis was shown in [15,16].
The approach [15] requires image tracking of several points in the
rotating object. Themethod presented in this paper requires image
tracking of only a single point, but it requires constant angular
velocity, which is not required for the use of [15].

Provided that camera intrinsic parameters are known, orienta-
tion and position of the camera with respect to the ground plane
can be determined [17]. In visual control, pose of the camera (ob-
ject) with respect to some ground plane is a valuable piece of in-
formation that can be used to improve autonomy of many robotic
tasks, like automatic landing of air-planes [18], hovering and nav-
igation of helicopters or quadrocopters [19], etc. Once the trans-
formation between the image and ground plane (homography) is
established, a view from a virtual camera looking perpendicular to
the ground plane can be obtained. The homography can be used
directly in visual control of mobile robots [20–22].

This paper is structured as follows. In Section 2 an overview
of the basic projective transformation relations is given and con-
ventional methods for camera calibration are presented. Section 3
presents three different methods for homography estimation from
circular motion. In Section 4 the results of the experimental vali-
dation are presented and comparison of the methods is given. Af-
terwards, a discussion of the results is given in Section 5 and in the
final section, Section 6, some conclusions are drawn.

2. Calibration overview

2.1. Points, lines and conics under perspective projection

If not specified differently, small bold-face letters (e.g. x) are
used to denote column vectors (e.g. homogeneous points) and big
bold-face letters (e.g. X) for matrices. The subscript (·)w is used
to denote the world coordinate frame, (·)p for the picture (image)
frame and (·)c for the camera frame.

The transformation between the point pT
w = [xw yw zw 1] in

the world frame and the corresponding point pT
p = [xp yp 1] in the

image frame can be described by a pinhole camera model [23]:

wpp = S

R t


pw, S =


α γ xpc
0 β ypc
0 0 1


, (1)

wherew is a scalar weight, while the matrix R ∈ R3
× R3 and the

vector t ∈ R3 describe camera orientation and position with re-
spect to the world frame. The upper-triangular matrix S contains
the intrinsic camera parameters: the scaling factorsα andβ in hor-
izontal and vertical direction, respectively; the optical axis centre
Fig. 1. Effects of all three basic transformations on a square: first to second,
similarity; second to third, affine; and third to last, pure projective transformation.

(xpc, ypc) and the skew factor γ . The model (1) is non-linear be-
cause of the dependencew = w(pw).

If theworld points are confined to a common plane, the relation
(1) simplifies. Without loss of generality, assume that the image
plane spans the axis vectors xw and yw (zw = 0):

wpp = S

r1 r2 t

 xw
yw
1


= Gpw , (2)

where the vector pT
w = [xw yw 1] has been redefined. In machine

vision community, the matrix G ∈ R3
× R3 is known as homogra-

phy. Denoting GT
= [g1 g2 g3], from Eq. (2) follows:

xp =
gT
1 pw

gT
3 pw

and yp =
gT
2 pw

gT
3 pw

. (3)

For the sake of notation simplicity, a new symbol for the in-
verse of the homography is introduced: H = G−1. The inverse ho-
mography mapping H can be decomposed into a set of elementary
transformations known as similarity, affine and pure projective
transformation:

H =

s cosϕ −s sinϕ tx
s sinϕ s cosϕ ty

0 0 1


  

Hs

1
b

−
a
b

0
0 1 0
0 0 1


  

Ha

1 0 0
0 1 0
l1 l2 l3


  

Hp

. (4)

The transformation Hp maps points from the image space to the
affine space, the transformation Ha from the affine to the metric
space and the matrix Hs from the metric to Euclidean space. The
effects of all three elementary transformations on a square can
be observed in Fig. 1. In the similarity matrix, the element s de-
scribes the scaling factor, the tuple (tx, ty) translation and the angle
ϕ right-handed planar rotation (around the axis z). The parameters
a and b of the affine to metric transformation define the shrinkage
and skewness. The last row in the pure projective transformation
matrix Hp contains the parameters of the vanishing line of the ob-
served plane lTp∞ = [l1 l2 l3].

Lines are invariant under projective transformation, in other
words, lines transform into lines: lp = HT lw . More generally, conic
sections (conics) remain conics under projective transformation.
The equation of a general conic in the implicit form is as follows:

pT
wCwpw = 0, Cw =

 A B/2 D/2
B/2 C E/2
D/2 E/2 F


, (5)

where all the parameters of the conic are gathered in the sym-
metric matrix Cw . Substituting pw for (2) gives the solution to the
description of the corresponding conic in the image frame pT

pCppp
= 0:

Cp = HTCwH . (6)

Another property of interest is the relation between the angle in
the image frameϕp and the corresponding angle in theworld plane
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Fig. 2. Transformation of a circle and parallel lines from the world plane (left) to
the image plane (right).

ϕw . The relation can be obtained from differentiation of Eq. (2).
Taking into account gT

3Hpp = 1, after some algebraicmanipulation,
the following equation can be obtained:

tanϕw =
(g21 − ypg31) cosϕp − (g11 − xpg31) sinϕp

(g12 − xpg32) sinϕp − (g22 − ypg32) cosϕp
. (7)

Note that this relation is dependent on the image coordinates pp.
To estimate all the intrinsic parameters in S , Zhang’s ap-

proach [3] requires three or more homographies that relate the
non-parallel planes to the image frame. Including some a-priori
knowledge about the camera parameters the approach can be used
to estimate the camera parameters even from two (e.g. assum-
ing no image skew γ = 0) or only one homography (e.g. already
known parameters need not be estimated). However, the first step
in recovering the camera parameters is estimation of the homog-
raphy matrices.

In some cases, the estimation of all the intrinsic parametersmay
not even be needed. Often we are only interested in obtaining the
homography up to similarity, which means that we are interested
only in thematrixHaHp — the transformation is also known asmet-
ric rectification, since it enables us to remove the projective dis-
tortion with respect to the world plane. As an illustration, consider
the problem of visual control of a mobile robot from an overhead
camera. To simplify the control design, the canonical configuration
is considered whenever possible, where the camera is placed in a
way that the image plane is parallel to the ground plane in which
the robot is moving [24]. In a more general case where the cam-
era is placed at an arbitrary inclination with respect to the ground
plane, the view perpendicular to the ground plane from the virtual
camera can still be obtained if the homography mapping between
the image plane and the ground plane is known [20,21].

In the following subsections, a short overview of the homog-
raphy estimation procedures based on point correspondences and
using conic properties is given.

2.2. Homography estimation from point correspondences

In order to estimate the homography, Eq. (3) is rewritten into a
special form:
pT
w 0T

−xppT
w

0T pT
w −yppT

w


g = 0, (8)

where gT
= [gT

1 gT
2 gT

3 ]. Given n point correspondences, by stack-
ing together n equations as (8) a linear system in the form

9g = 0, (9)

is obtained, where 9 ∈ R2n
× R9 and 0 is a null vector of length

2n. The calibration points must not be collinear to avoid ill-
conditioning of the system (9). The solution g is defined up to a
scale factor, so additional constraint is needed [25]. Imposing the
constraint gTg = 1, the solution is known to be the eigenvector
of 9T9 associated with the smallest eigenvalue. To improve nu-
merical stability of the solution some sort of data normalization
should be performed, e.g. as suggested in [26]. According to the
noisemodel amore geometricallymeaningful error can be defined,
and the solution can be refined throughmaximum likelihood infer-
ence [3].

In the obtained homography matrix, the origin of the world
plane may not be where we desire. It is simple to show that
the world coordinate frame can be translated and rotated to ar-
bitrary location without repeating the estimation procedure (9).
Only one more similarity transform (with constant scale factor)
needs to be appended to the right-hand side of the homography
G that achieves the desired placement of the world plane coordi-
nate frame — the whole process can be achieved through image
interaction.

In a case, when only the relative lengths between the points in
world space are known, the homography can be estimated up to
the unknown scale factor.

2.3. Homography estimation using conic properties

There are some special properties about the circles (conics) un-
der projective transformation. Two conics always intersect at four
complex or real points. Two coplanar circles always intersect at
two complex points at infinity pT

w{a,b} = [1 ± i 0], known as
circular points. These two circular points lie on the line at infinity
lTw∞

= [0 0 1] and are transformed into the images of the circular
points (ICPs) ppa and ppb that lie on the vanishing line lp∞.

Let us describe how the homography up to similarity HaHp can
be recovered from the image of the circle Cp and the image of the
circle centre pp0. To determine the pure perspective transforma-
tion Hp one has to find the vanishing line lTp∞ = [l1 l2 l3] (see (4)),
which is the image of the line at infinity in the world plane. All the
parallel lines in the world plane intersect at some vanishing point
in the image (see dashed lines in Fig. 2). Two (or more) sets of par-
allel lines (the lines in one set are not parallel with the lines in any
another set) from a common plane, give two (or more) vanishing
points, all lying on a common line — the vanishing line lp∞.

As long as the circle in the world plane is in front of the camera,
the circle transforms into an ellipse under projective transforma-
tion. It is a well known property of the projective transformation
that the origin of the ellipse in the image, which is the image of the
circle in the world plane, does not coincide with the image of the
origin of that circle. This fact can clearly be observed in Fig. 2. The
image of the circle (the ellipse) Cp, the image of the circle centre
pp0 and the vanishing line lp∞ are in the polar relation

lp∞ = Cppp0, (10)

which gives us a straight-forward way to calculate the vanishing
line (Fig. 2).

The vanishing line lp∞ intersects the image of the circle Cp at
two virtual points, ICPs ppa and ppb. It can be checked that the ICPs
are invariant under the similarity transform. From the ICPs all the
parameters of the homographymatrix up to similarityHaHp can be
analytically determined, since the two circular points pw{a,b} trans-
form into the ICPs pp{a,b} = [b ± ia, ± i, −

l1b
l3

∓
l1a+l2

l3
].

3. Self calibration from circular motion

The camera calibration procedure described in Section 2.2 re-
quires knowledge of theworld points lying on a commonplane and
the corresponding image points. In this section we present a cali-
bration procedure for estimation of the homography up to similar-
ity that is based on circularmotion of a point around the single axis.

Without loss of generality, suppose a camera is observing a
point that is rotating in a plane around a single axis. The motion
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Fig. 3. Two different hypotheses regarding the image of the circle centre (world
plane on left and image plane on right) —∆ϕ{p,w},i = ϕ{p,w},i+1 − ϕ{p,w},i .

of the point (xw, yw) in the world plane can be described by the
following model:

xw(t) =

 t

0
ν(τ) cos(ϕw(τ ))dτ + xw(0),

yw(t) =

 t

0
ν(τ) sin(ϕw(τ ))dτ + yw(0), (11)

ϕw(t) =

 t

0
ω(τ)dτ + ϕw(0),

where ν andω represent the tangential and angular velocity of the
point, respectively. Initial conditions define the position and orien-
tation of the origin of the world frame and are usually not known
precisely. At this point the initial conditions can all be set to ar-
bitrary values, because, as already mentioned in Section 2.2, the
origin of the world plane can be determined after calibration.

Numerical integration of Eqs. (11) introduces drift, which lim-
its the integration time in order to stay within an acceptable error
region. Let us set the tangential and angular velocities to constant
non-zero value, so in steady-state circular motion of the rotating
point should be achieved. One of the advantages of constant veloc-
ities is their invariance to delays and elimination of numerical inte-
gration. With selection ν(t) = ν = const . and ω(t) = ω = const.,
analytical solution for the world coordinates can be obtained from
Eq. (11):

xw(t) =
ν

ω
(sin(ωt + ϕw(0))− sin(ϕw(0)))+ xw(0),

yw(t) = −
ν

ω
(cos(ωt + ϕw(0))− cos(ϕw(0)))+ yw(0).

Since the initial conditions can be set to arbitrary values, we take
the following selection: xw(0) =

ν
ω
, yw(0) = 0 and ϕw(0) =

π
2 ,

which yields:

xw(t) =
1
κ
cos(ωt) and yw(t) =

1
κ
sin(ωt). (12)

The relation between the angular and tangential velocity de-
fines the curvature of the circular path κ =

ω
ν
. In order to obtain

satisfactory estimation results, the input signals must be carefully
chosen to achieve an adequately large radius (small curvature) of
the circular path.
Fig. 4. Cost function for determining the image of the circle centre by Lourakis’
method when 80% of the full circle is available.

3.1. Direct method: homography estimation from point correspon-
dences

The homography can be estimated from a set of point corre-
spondences between two planes as described in Section 2.2. In our
case, all we need to do is to track the position of the image of the
point, which is rotating at constant tangential and angular velocity
in the world plane, and take note of time. Then, using the model
(12), the world points can be calculated.

This approach requires measurement of the angular velocity of
the rotating point. The inaccurate information about the angular
velocity causes an error in Eq. (12) due to the wrong estimation of
the circular path period. This systematic error can be eliminated
by estimating the circle period from the period of the ellipse of
the tracked point in the image, since the periods of both ellipsoids
should be the same. Therefore, the period can be estimated if the
rotating pointmakes at least one full circle. The error in the tangen-
tial velocity is not so crucial, because it only influences the radius
of the circular path, in other words, it only influences the size of
the world unit vector (part of the similarity transform).

3.2. Lourakis’ method: homography estimation from coplanar circles

Lourakis presented the procedure for metric rectification from
multiple coplanar circles [10]. The algorithm requires at least two
coplanar circles (radius ratio need not be known). Here a short
summary of the approach is given. First, ellipses are fitted to all
the n > 1 images of the circles. Then, a two-step search for the pro-
jected circle centre of one of the circles (e.g. the circle i) is carried
out. In the first step, a hypothesis regarding the image of the ith cir-
cle centre pp0 is made somewhere inside the ellipse (the image of
the circle). Using the assumed circle centre, the homography that
would transform the ellipse into a circle is calculated as described
in Section 2.3. In the second step, all the other n − 1 ellipses are
transformed with the same homography. Then, the shapes of all
the transformed ellipses are compared to the shape of a circle by
some distance measure e.g. by comparing the semi-major Mj and
semi-minor axismj of the transformed ellipses:

E ′(pp0) =

n
j=1,j≠i

1 −


mj

Mj

2
 . (13)

Several hypotheses regarding the image of the circle centre pp0 are
made by selecting many different points inside the ith ellipse en-
velope. The homography that transforms all the other ellipses to
the most ideal circles (i.e. has the smallest value of the criterion
function E ′) is the solution we are looking for.

The algorithm was designed for static images of circles. How-
ever, the method can also be used in the case of in-image tracking
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Table 1
Quantitative comparison of different rectification methods.

Method Requirements Advantages Disadvantages

Direct One set of the image points and corresponding
time tuples {(ppi, ti)}; known angular velocity
ω or at least one full circle.

Closed form solution; computationally fast. Requires knowledge of the point
correspondences and angular velocity.

Lourakis’ At least two sets of the image points {ppi}

corresponding to two images of the circles or
parameters Cpi of two images of the circles.

Point correspondences need not be known;
more robust than the direct method, since it is
based on conics (not points).

Iterative method; computationally intensive in a
case when high accuracy is required.

Proposed One set of the image points and corresponding
time tuples {(ppi, ti)}

Only a single circle is required; the circle need
not be a complete full circle; point
correspondences need not be known; angular
velocity is also estimated.

Iterative method; computationally intensive in a
case when high accuracy is required.
Fig. 5. Cost functions for determining the image of the circle centre by the proposed approach when (a) 40%, (b) 60%, (c) 80% and (d) 100% of the full circle is available,
respectively.
of several points that are all rotating in the same plane. In such a
case, one advantage of the algorithm is that it does not require the
knowledge about the angular velocity and time (the angles around
the circle origin). Metric rectification is based on conic features
that can normally be determined with higher accuracy than point
features. To achieve an adequate accuracy and avoid local minima
problems the search area must be partitioned into small enough
regions, but that increases the time it takes to find the minimum.

3.3. Proposed approach: homography estimation from circular mo-
tion

Suppose, the camera is observing an object that is rotating at
constant angular velocity around a single axis in someworld plane.
The image tracking algorithm is following a single point in the ro-
tating object. As a result of the tracking a set of N tracked points
in the image frame with the corresponding times of observation
{(ppi, ti)}i=1,2,...,N is obtained. If the observed point is always in
front of the camera plane, the set of points froma circle in theworld
frame form an ellipse in the image frame. Our approach then goes
as follows. To the set of the image points {ppi}i=1,2,...,N the ellipse Cp
is fitted. There are many methods for conic (ellipse) fitting [27,28].
Since we known the image of a circle is an ellipse it is the best
to use a method that takes this assumption into account (e.g. see
implementation [29]). The homography up to similarity is then
uniquely determined by the image of the circle centre. As opposed
to Lourakis’ method, who uses the images of the another coplanar
circle to find the image of the circle centre, the proposed approach
makes use of the time series {ti}i=1,2,...,N as follows. The basic idea
of the approach is that the angle ϕw around the circle centre is con-
sidered to be proportional to the time of observation t , since the ro-
tating point is assumed to be rotating at constant angular velocity.

The procedure for plane rectification can be summarized in the
following steps:
1. Fit the ellipse Cp to the set of points {ppi}i=1,2,...,N .
2. Partition the area inside the ellipse envelope into a grid.
3. For every point in the grid do:

(a) Mark the selected point as pT
p0 = [xp0 yp0 1].

(b) Determine the homography matrix H that transforms the
ellipse Cp into a circle and the point pp0 into the centre of
that circle as described in Section 2.3.

(c) Calculate the set of angles {ϕpi = arg(ppi − pp0)}i=1,2,...,N
and insert them into Eq. (7) to obtain the set of angles
{ϕwi}i=1,2,...,N .
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Fig. 6. The influence of the part of the circle available to (a) the error in estimation of the image of the circle centre, (b) the ellipse fitting error and (c) the rectification
absolute error RAE. (d) The images of data at different part of the available circle.
(d) Find the parametersω andφ using the least squaresmethod
that minimize the cost function

E(pp0) = min
ω,φ

N
i=1

ϕwi − ωti − φ, (14)

where φ is a scalar that determines the initial angle in the
world plane, and ω is the unknown angular velocity.

4. Choose the pp0 as the image of the circle centre,ω as the angular
velocity of the rotating object and H as the homography that
has the minimum cost function E among all the points from the
search area.

Two different hypotheses regarding the image of the circle cen-
tre can be seen in Fig. 3. In a case of the true image of the circle cen-
tre, the angles in the world plane are proportional to themeasured
time. The method can give the smallest value of the cost function
E when the image of the circle centre is near the ellipse envelope,
even if the true circle centre does not lie there. The problem can be
avoided by defining some forbidden margin around the ellipse en-
velope where the search for the image of the circle centre should
not be carried out.

The proposedmethod requires some encirclement of only a sin-
gle point in the world plane. Themost important advantages of the
method over the direct method presented in Section 3.1 are: the
homography up to similarity can be estimated even when the data
from only a part of the circle is available; the angular velocity is
also estimated during the process. The approach is quite computa-
tionally intensive if wewant to achieve satisfactory accuracy, since
we need to search the whole area inside the ellipse envelope. The
computational intensity is in the same time range as in Lourakis’
approach. However, the computational burden can be reduced by
starting with a very rough mesh, and then making several refine-
ments around theminimum. The advantage over Lourakis’ method
given in Section 3.2 is that the proposed method only require one
circle. The quantitative comparison of all the presentedmethods is
summarized in Table 1.

The proposed method is also applicable in a case of a static
scene (no rotations) where a circle is available with some points
for which the angle between them is known, but the image of the
circle centre cannot be determined from the image.

4. Experiments

4.1. Synthetic data

We validated all three methods for estimation of the homog-
raphy up to similarity HaHp on synthetic data. We simulated the
motion of two points rotating in the same plane. That resulted in
two circular trajectories: a circle with the radius r1 = 0.2 m ro-
tating at the angular velocity ω1 = 0.5 rad/s around the ground
frame origin and a circle with the radius r2 = 0.4 m rotating at the
angular velocity ω2 = 0.5 rad/s around the point (0.2 m, 0.2 m)
in the ground plane. The configuration of the projection planewith
respect to the ground plane was selected to be as given by the fol-
lowing homography matrix:

G =

0.4643 −0.1739 0.5317
0.3255 0.4545 0.3987

0 0.0003 0.0017


. (15)

The circular trajectories were sampled at sample time Ts = 0.1 s.
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Fig. 7. The influence of the noise in the measurement of the points in the image frame to (a) the error in estimation of the image of the circle centre, (b) the ellipse fitting
error and (c) the rectification absolute error RAE. (d) The images of the data at various noise levels.
We assumed that the time of observation is only 80% of the
time it takes to complete one full circle, and Gaussian white noise
with the variance σ 2

n = 1 px2 is added to the measured points in
the image frame. Under given conditions, Figs. 4 and 5c show the
cost functions for estimation of the image of the circle centre by
Lourakis’ method and the proposed method. The search area for
the image of the circle centre was partitioned into 40 × 40 search
grid and the result around the minimum was refined three times.
All the cost functions are plotted in logarithmic scale to improve
visibility of the minimum. The direct approach is not included in
the comparison of the cost functions, since it does not require
to evaluate the image of the circle centre with a cost function.
Fig. 5 shows cost functions of the proposed method for different
durations of observation (less or equal to the time it takes to make
one full circle).

All the calibration methods were evaluated for robustness with
respect to different disturbances and non-ideal conditions. In the
direct method, we assumed that the true angular velocity ω was
known, although in the real world this is usually not the case.
The calibration procedures were repeated several times to ensure
statistically accurate results (ten times in our case). To compare the
performance of all the methods, several criterion functions were
defined. To evaluate the homography up to similarity by Lourakis’
and the proposed method an accurate estimation of the image of
the circle centre and an accurate fit of the ellipse to the image of the
circle is needed. The error in estimation of the image of the circle
centre was defined as follows:

d =


(p̂p0 − pp0)T (p̂p0 − pp0) , (16)

where p̂p0 is the estimated image of circle centre and pp0 is the
true image of the circle centre. The accuracy of the ellipse fit was
evaluated using the following error function:

D =
1
N

N
j=1


(p̂p,j − pp,j)T (p̂p,j − pp,j) , (17)

where the point pp,j represents a point on the envelope of the
ellipse that is estimated by the point p̂p,j in a way that both points
share the same angle around the ellipse centre. In order to achieve
satisfactory precision, the number of pointsN where themismatch
between the ellipses is evaluated should be high and the points
should be distributed uniformly around the centre of the reference
ellipse (in our caseN = 1000). Furthermore, an additional criterion
for evaluation of the rectification performance was defined that is
based on orthogonality of the lines:

RAE =
1
4

4
j=1

π
2

− γj

 , (18)

where γj is the angle between the rectified images of the two lines
that are perpendicular in the world plane. In the criterion (18) four
perpendicular lines are considered that form a square and cross
at four points around which the four angles γj, j ∈ {1, 2, 3, 4},
are calculated. In an ideal case the RAE criterion (18) should be
zero. Since the RAEdirectly evaluates the performance of the image
rectification, it is considered to be themost relevant error criterion,
but the other two presented errors, (16) and (17), can give some
additional insight into estimation performance. In short, the error
in homography estimation can occur due to bad ellipse fitting, or
else the error is due to wrong circle centre estimation.

Fig. 6a shows the error in estimation of the image of the circle
centre for all three methods with respect to the part of the full
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Fig. 8. The influence of the noise in the measurement of the time to (a) the error in estimation of the image of the circle centre, (b) the ellipse fitting error and (c) the
rectification absolute error RAE. (d) The various levels of uniformly distributed noise in the measurement of the time.
circle available. For the same case, Fig. 6b shows the error in ellipse
fitting, and Fig. 6c shows the absolute rectification error RAE. In
all the figures the mean error from all the repetitions of the same
experiment is shown, together with the minimum and maximum
error, and the range in which half of the measurements can be
found.

Fig. 7 presents the results of robustness to the noise with the
variance σ 2

n in the measurement of the points in the image frame.
We assumed that only 80% of the full circle was available for
calibration.

The methods were also evaluated for performance to noise in
the measurement of the time with a uniform distribution of the
noise with the amplitude δt (Fig. 8). We again assumed that only
80% of the full circle is available, and that the measurement of the
points in the image frame is disturbed by Gaussian white noise
with variance σ 2

n = 1 px2.
The performance of the estimation approaches was also tested

for susceptibility to the inclination ψ of the projection plane with
respect to the ground plane. The same assumptions as presented in
the previous paragraph were made. Since every inclination of the
camerawith respect to the groundplane is representedbydifferent
homography, a set of these homographies can be used to estimate
the intrinsic camera parameters. The intrinsic parameters of the
camera used in the experiments were:
xpc = 320, ypc = 240, α = β = 1000, γ = 50. (19)
Taking all the estimatedhomographies at different inclinations, the
following intrinsic camera parameters were estimated using the
approach described in [3]:

x̂pc = 311.2554, ŷpc = 262.8430,

α̂ = 1009.4, β̂ = 1009.7, γ̂ = 54.9693.
(20)
4.2. Real data

We made real experiments on a two wheeled differentially
driven mobile system normally used in the FIRA MiroSot robot
soccer small league. The mobile system was marked with a colour
badge to be easily tracked by an overhead camera [24]. We used
an IEEE-1394 digital colour camera with the resolution of 640 ×

480 px2. The camerawas placed at an inclined anglewith respect to
the groundplane. Constant control velocitieswere sent to the robot
(νc = 0.4 m/s and ωc = 2 rad/s). At each time step (Ts = 0.1 s)
we measured the position of the robot in the image frame and the
image acquisition time. The measured data in the image frame for
four circles at different locations is shown in Fig. 10.

All the presented calibration approaches were experimentally
tested on the data of the circles one to four. In the case of Lourakis’
method, the other circles of the selected one were used for the
calculation of the cost function (14). In Table 2, estimations of the
images of the circle centres are gathered. Figs. 11a–c show the
rectified images by all three methods when the data of the first
circle is used. The orthogonal lines of the soccer field lying in the
ground plane should appear orthogonal in the rectified images, so
we can visually evaluate the accuracy of the calibration methods
by observing the transformed images.

5. Discussion

Both cost functions in Figs. 4 and 5c have strong minimum at
the image of the circle centre. As it can be observed in Fig. 5, the
cost function of the proposed method wraps down near ellipse
boundary as smaller part of the full circle is available. This can lead
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Fig. 9. The influence of the inclination of the projection plane with respect to the ground plane to (a) the error in estimation of the image of the circle centre, (b) the ellipse
fitting error and (c) the rectification absolute error RAE. (d) The images of the circle at various inclinations with respect to the ground plane.
Table 2
Comparison of estimation of the image of the circle centre for all the calibration methods on real data.

Method Circle Circle 1 Circle 2 Circle 3 Circle 4

Direct (xp0, yp0)/px (303.522, 276.54) (441.901, 271.669) (397.937, 212.223) (213.39, 318.794)
Lourakis (xp0, yp0)/px (304.512, 274.62) (438.675, 270.75) (397.692, 213.389) (210.997, 317.479)

Proposed (xp0, yp0)/px (303.935, 274.511) (438.954, 270.509) (397.884, 213.273) (210.522, 317.299)
ω/s−1 2.045 2.050 2.046 2.053

Direct∗ (xp0, yp0)/px (303.906, 274.517) (439.007, 270.512) (397.919, 213.256) (210.5, 317.311)
to wrong estimation of the circle centre. This problem is avoided
when a large-enough part of the circle is available. Another thing
to mention that applies to Lourakis’ and the proposed method is
that sensitivity of themethod used for fitting an ellipse [29] greatly
increases when only a small part of the ellipse envelope is avail-
able. In Fig. 5a, where measurements from only 40% of the full cir-
cle are available, it can be seen that the ellipse (solid line) fitted
to themeasured points (positive-signmarkers) does not match ac-
curately the true image of the circle (dotted line), and this is also
the reason that the estimated image of the circle centre does not
coincide with the true value.

As smaller and smaller part of the complete circle is available
the error in estimation of the image of the circle centre increases
in all the methods. The error of the direct method can be seen as
the reference error, but should be noted that we assumed that the
angular velocity was known a-priori. The error in estimation of the
image of the circle centre of the other two methods converges to
the error of the direct method when the circle part limits towards
the full circle. Because the direct method does not need ellipse
fitting, only the other two methods were compared in Fig. 6b,
where the results for both methods are the same, since the same
ellipse fitting algorithm was used in both methods. As expected,
the ellipse fitting is better when the image of a larger part of the
full circle is available.

As expected, when the noise level in the measured points
increases, the ellipse fitting error also increases. In Lourakis’ and
the proposed method the estimation of the image of the circle
centre is dependent on the accuracy of the ellipse fit, so the error
in the estimation of the circle centre is also expected to increase
with the noise level, and this can be observed in Fig. 7. The RAE
measure confirms that the proposed estimation procedure gives
more accurate results than Lourakis’ method and the performance
of the proposed approach is better than the Lourakis method and
close to the direct method.

The noise in the measurement of the time influences the
estimation of the image of the circle centre only in the proposed
and the directmethod, which is expected, since Lourakis’ approach
does not requiremeasurement of time (but it requires two ormore
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Fig. 10. Real camera view and measurements of the four coplanar circular
trajectories.

circles). Nevertheless, the influence of the noisy measurements of
time to the accuracy of the estimation is significantly smaller than
with respect to the noise in the image points and circle part.

The results in Fig. 9 show some susceptibility of all themethods
to the inclination. Again, the proposed method gives satisfactory
results. Even though the homographies are estimated with satis-
factory precision, the camera intrinsic parameters estimated from
multiple homographies (obtained at different inclinations) may
not give satisfactory results, since the approach used (described
in [3]) seems to be quite susceptible to noise. However, the cam-
era intrinsic parameters can be obtained from multiple homogra-
phies. Since the same data, as used in Fig. 9, could be generated
with rotating camera around a single axis with tracking of an off-
axis point, the proposed approach could be used to estimate the
intrinsic parameters of a camera mounted at the end-effector of a
robotic manipulator with circular joints. In a case one of the joint
of the robotic arm manipulator is set to rotate at constant angular
velocity and the camera is tracking a single point, a single homog-
raphy can be estimated. Afterwards some of the other joints of the
robotic arm manipulator can be reconfigured to achieve different
inclination of the camerawith respect to the axis of rotation. In this
way a set of homographies is obtained that can be used in estima-
tion of the camera intrinsic parameters.

Regarding the real data (Fig. 10), the directmethoddoes not give
as good results as Lourakis’ and the proposed method. That is due
to the fact that the angular velocity is not measured and therefore
not known exactly. From Table 2 we can see that the estimated an-
gular velocity by the proposed method is not equal to the angular
velocity control command ωc = 2 rad/s. From a quick look at the
estimated images of the circle centres, the differencemay not seem
significant. Using the angular velocity estimated by the proposed
method, we repeated the estimation of the homography with the
direct method (denoted as direct∗ in Table 2). As a result, the rec-
tified image in Fig. 11d gives satisfactory results. We can conclude
that the direct method is indeed very susceptible to the error in
the angular velocity, and that the proposed method can solve the
metric rectification problem.

The computational burden of the proposed method and
Lourakis’ method is in the same time range (several seconds in
the proposed implementation on a contemporary computer), and
it is significantlymore time-consuming as the direct method (hun-
dreds of milliseconds). As already mentioned, the time consump-
tion of the proposed and Lourakis’ method is dependent on the
resolution of the search area. The search for the image of the circle
centre was carried out in a way that refines the search grid sev-
eral times (three times in the proposed case). In this way, we re-
duced the search time from several tens of seconds to only several
seconds, but were able to achieve the same accuracy. In the pro-
posed method, the search algorithm for the optimum solution
could be speeded-up even more by using some additional op-
timization techniques. However, the time consumption is not a
significant drawback of the method, since calibration algorithms
normally do not need to be executed in real time.

6. Conclusion

Several methods for estimation of the homography up to simi-
larity from the circular motion were presented. The study was fo-
cused on a case when the camera is observing and tracking a single
point on an object that is rotating at constant angular velocity
around a fixed axis. Since the direct method and the approach pro-
posed by Lourakis may not give satisfactory results for the consid-
ered case in the presence of disturbances and non-ideal conditions,
a new method for estimation of the homography up to similarity
was developed that is specialized for calibration from circular mo-
tion around a single axis. The main drawback of the direct method
is that it requires a-priori knowledge of the angular velocity. The
method proposed by Lourakis requires at least two coplanar cir-
cles, and these may be hard to generate in some visual servoing
configurations. The proposed method is well suited for use in sev-
eral visual servoing applications, since the calibration process can
be achieved without special preparation of the environment. The
main advantages of the proposed method are that it estimates the
angular velocity and that it only requires a single circle for the es-
timation. Another benefit of the proposed method is that the es-
timation of the homography is based only on the measurements
obtained in the image.

The presented method was experimentally validated and com-
pared to the other two methods. The results prove that the
proposed method was able to achieve satisfactory accuracy in
different configurations and even in the presence of disturbances.
The experiments made on synthetic data also showed that it is
possible to obtain the camera intrinsic parameters from multiple
homographies. The real experiments, made on the mobile system
normally used in the robot soccer small league, demonstrated how
the proposed method could be used to eliminate the perspective
projection.
Fig. 11. Rectified images of the image in Fig. 10 using the data of the circle 1 with (a) the direct method, (b) Lourakis’ method (the other circles are used for estimation of
the first circle centre), (c) proposed method and (d) the direct method with angular velocity estimated by the proposed method.
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